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 CHAPTER NINE 

 Binary Operation Applications 

Our discussion so far has focused on logic design as it applies to 
hardware implementation. Frequently software design also requires the 
use of binary logic. This section presents some higher-level binary 
applications, ones that might be found in software. These applications 
are mostly for error checking and correction, but the techniques used 
should not be limited to these areas. 

9.1 Bitwise Operations 
Most software performs data manipulation using mathematical 

operations such as multiplication or addition. Some applications, 
however, may require the examination or manipulation of data at the bit 
level. For example, what might be the fastest way to determine whether 
an integer is odd or even?   

The method most of us are usually taught to distinguish odd and 
even values is to divide the integer by two discarding any remainder 
then multiply the result by two and compare it with the original value. 
If the two values are equal, the original value was even because a 
division by two would not have created a remainder. Inequality, 
however, would indicate that the original value was odd. Below is an 
if-statement in the programming language C that would have performed 
this check. 

 
if(((iVal/2)*2) == iVal) 
    // This code is executed for even values 
else  
    // This code is executed for odd values 

 
Let's see if we can't establish another method. As we discussed in 

Chapter 3, a division by two can be accomplished by shifting all of the 
bits of an integer one position to the right. A remainder occurs when a 
one is present in the rightmost bit, i.e., the least significant bit. A zero 
in this position would result in no remainder. Therefore, if the LSB is 
one, the integer is odd. If the LSB is zero, the integer is even. This is 
shown with the following examples. 
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 3510 =  001000112 12410 =  011111002 
 9310 =  010111012 3010 =  000111102 

 
This reduces our odd/even detection down to an examination of the 

LSB. The question is can we get the computer to examine only a single 
bit, and if we can, will it be faster than our previous example? 

There is in fact a way to manipulate data at the bit level allowing us 
to isolate or change individual bits. It is based on a set of functions 
called bitwise operations, and the typical programming language 
provides operators to support them. 

The term bitwise operation refers to the setting, clearing, or toggling 
of individual bits within a binary number. To do this, all processors are 
capable of executing logical operations (AND, OR, or XOR) on the 
individual pairs of bits within two binary numbers. The bits are paired 
up by matching their bit position, performing the logical operation, then 
placing the result in the same bit position of the destination value. 

 
 
 
 
 
 
 

Figure 9-1   Graphic of a Bitwise Operation Performed on LSB 

As an example, Figure 9-2 presents the bitwise AND of the binary 
values 011010112 and 110110102. 

 
Value 1 0 1 1 0 1 0 1 1 
Value 2 1 1 0 1 1 0 1 0 

Resulting AND 0 1 0 0 1 0 1 0 

Figure 9-2   Bitwise AND of 011010112 and 110110102 

Remember that the output of an AND is one if and only if all of the 
inputs are one. In Figure 9-2, we see that ones only appear in the result 
in columns where both of the original values equal one. In a C program, 
the bitwise AND is identified with the operator '&'. The example in 
Figure 9-2 can then be represented in C with the following code. 

Value 2

Result 

Value 1 
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 int iVal1 = 0b01101011; 
 int iVal2 = 0b11011010; 
 int result = iVal1 & iVal2; 

 
Note that the prefix '0b' is a non-standard method of declaring a 

binary integer and is not supported by all C compilers. If your compiler 
does not support this type of declaration, use the hex prefix '0x' and 
declare iVal1 to be 0x6B and iVal2 to be 0xDA. As for the other 
bitwise operators in C, '|' (pipe) is the bitwise OR operator, '^' (caret) is 
the bitwise XOR operator, and '~' (tilde) is the bitwise NOT operator. 

Typically, bitwise operations are intended to manipulate the bits of a 
single variable. In order to do this, we must know two things: what 
needs to be done to the bits and which bits to do it to. 

As for the first item, there are three operations: clearing bits to zero, 
setting bits to one, and toggling bits from one to zero and from zero to 
one. Clearing bits is taken care of with the bitwise AND operation 
while setting bits is done with the bitwise OR. The bitwise XOR will 
toggle specific bits. 

A bit mask is a binary value that is of the same length as the original 
value. It has a pattern of ones and zeros that defines which bits of the 
original value are to be changed and which bits are to be left alone. 

The next three sections discuss each of the three types of bitwise 
operations: clearing bits, setting bits, and toggling bits. 

9.1.1 Clearing/Masking Bits 
Clearing individual bits, also known as bit masking, uses the bitwise 

AND to clear specific bits while leaving the other bits untouched. The 
mask that is used will have ones in the bit positions that are to be left 
alone while zeros are in the bit positions that need to be cleared. 

This operation is most commonly used when we want to isolate a bit 
or a group of bits. It is the perfect operation for distinguishing odd and 
even numbers where we want to see how the LSB is set and ignore the 
remaining bits. The bitwise AND can be used to clear all of the bits 
except the LSB. The mask we want to use will have a one in the LSB 
and zeros in all of the other positions. In Figure 9-3, the results of three 
bitwise ANDs are given, two for odd numbers and one for an even 
number. By ANDing a binary mask of 000000012, the odd numbers 
have a non-zero result while the even number has a zero result. 

This shows that by using a bitwise AND with a mask of 000000012, 
we can distinguish an odd integer from an even integer. Since bitwise 
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operations are one of the fastest operations that can be performed on a 
processor, it is the preferred method. In fact, if we use this bitwise 
AND to distinguish odd and even numbers on a typical processor, it can 
be twice as fast as doing the same process with a right shift followed by 
a left shift and over ten times faster than using a divide followed by a 
multiply.  

 
3510 (odd) 0 0 1 0 0 0 1 1 

Odd/Even Mask 0 0 0 0 0 0 0 1 
Bitwise AND Result 0 0 0 0 0 0 0 1 

 
9310 (odd) 0 1 0 1 1 1 0 1 

Odd/Even Mask 0 0 0 0 0 0 0 1 
Bitwise AND Result 0 0 0 0 0 0 0 1 

 
3010 (even) 0 0 0 1 1 1 1 0 

Odd/Even Mask 0 0 0 0 0 0 0 1 
Bitwise AND Result 0 0 0 0 0 0 0 0 

Figure 9-3   Three Sample Bitwise ANDs 

Below is an if-statement in the programming language C that uses a 
bitwise AND to distinguish odd and even numbers. 

 
if(!(iVal&0b00000001)) 
    // This code is executed for even values 
else  
    // This code is executed for odd values 

 
The bitwise AND can also be used to clear specific bits. For 

example, assume we want to separate the nibbles of a byte into two 
different variables. The following process can be used to do this: 

 
• Copy the original value to the variable meant to store the lower 

nibble, then clear all but the lower four bits 
• Copy the original value to the variable meant to store the upper 

nibble, then shift the value four bits to the right. (See Section 3.7, 
"Multiplication and Division by Powers of Two," to see how to 
shift right using C.)  Lastly, clear all but the lower four bits. 

 
This process is demonstrated below using the byte 011011012. 
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Isolating the lower nibble 
 

Original value 0 1 1 0 1 1 0 1 
Lower nibble mask 0 0 0 0 1 1 1 1 

Resulting AND 0 0 0 0 1 1 0 1 
 

Isolating the upper nibble 
 

Original value 0 1 1 0 1 1 0 1 
 

Shift right 4 places 0 0 0 0 0 1 1 0 
Lower nibble mask 0 0 0 0 1 1 1 1 

Resulting AND 0 0 0 0 0 1 1 0 
 

The following C code will perform these operations. 
 
lower_nibble = iVal & 0x0f; 
upper_nibble = (iVal>>4) & 0x0f; 

Example 
Using bitwise operations, write a function in C that determines if an 

IPv4 address is a member of the subnet 192.168.12.0 with a subnet 
mask 255.255.252.0. Return a true if the IP address is a member and 
false otherwise. 

Solution 
An IPv4 address consists of four bytes or octets separated from one 

another with periods or "dots". When converted to binary, an IPv4 
address becomes a 32 bit number. 

The address is divided into two parts: a subnet id and a host id. All 
of the computers that are connected to the same subnet, e.g., a company 
or a school network, have the same subnet id. Each computer on a 
subnet, however, has a unique host id. The host id allows the computer 
to be uniquely identified among all of the computers on the subnet. 

The subnet mask identifies the bits that represent the subnet id. 
When we convert the subnet mask in this example, 255.255.252.0, to 
binary, we get 11111111.11111111.11111100.00000000. 

The bits that identify the subnet id of an IP address correspond to the 
positions with ones in the subnet mask. The positions with zeros in the 
subnet mask identify the host id. In this example, the first 22 bits of any 
IPv4 address that is a member of this subnet should be the same, 
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specifically they should equal the address 192.168.12.0 or in binary 
11000000.10101000.00001100.00000000. 

So how can we determine if an IPv4 address is a member of this 
subnet?  If we could clear the bits of the host id, then the remaining bits 
should equal 192.168.12.0. This sounds like the bitwise AND. If we 
perform a bitwise AND on an IPv4 address of this subnet using the 
subnet mask 255.255.252.0, then the result must be 192.168.12.0 
because the host id will be cleared. Let's do this by hand for one 
address inside the subnet, 192.168.15.23, and one address outside the 
subnet, 192.168.31.23. First, convert these two addresses to binary. 

 
192.168.15.23 = 11000000.10101000.00001111.00010111 
192.168.31.23 = 11000000.10101000.00011111.00010111 

 
Now perform a bitwise AND with each of these addresses to come 

up with their respective subnets. 
 

IP Address 11000000.10101000.00001111.00010111 

Subnet mask 11111111.11111111.11111100.00000000 

Bitwise AND 11000000.10101000.00001100.00000000 
 

IP Address 11000000.10101000.00011111.00010111 

Subnet mask 11111111.11111111.11111100.00000000 

Bitwise AND 11000000.10101000.00011100.00000000 
 
Notice that the result of the first bitwise AND produces the correct 

subnet address while the second bitwise AND does not. Therefore, the 
first address is a member of the subnet while the second is not. 

The code to do this is shown below. It assumes that the type int is 
defined to be at least four bytes long. The left shift operator '<<' used in 
the initialization of sbnt_ID and sbnt_mask pushes each octet of 
the IP address or subnet mask to the correct position. 

 
int subnetCheck(int IP_address) 
{ 
  int sbnt_ID = (192<<24)+(168<<16)+(12<<8)+0; 
  int sbnt_mask = (255<<24)+(255<<16)+(252<<8)+0; 
  if((sbnt_mask & IP_address) == sbnt_ID)  
    return 1; 
  else return 0; 
} 
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9.1.2 Setting Bits 
Individual bits within a binary value can be set to one using the 

bitwise logical OR. To do this, OR the original value with a binary 
mask that has ones in the positions to be set and zeros in the positions 
to be left alone. For example, the operation below sets bit positions 1, 
3, and 5 of the binary value 100101102. Note that bit position 1 was 
already set. Therefore, this operation should have no affect on that bit. 

 
Original value 1 0 0 1 0 1 1 0 

Mask 0 0 1 0 1 0 1 0 
Bitwise OR 1 0 1 1 1 1 1 0 

 
In a C program, the bitwise OR is identified with the operator '|'.  

Example 
Assume that a control byte is used to control eight sets of lights in 

an auditorium. Each bit controls a set of lights as follows: 
 

bit 7 – House lighting 
bit 6 – Work lighting 
bit 5 – Aisle lighting 
bit 4 – Exit lighting 

 bit 3 – Emergency lighting 
bit 2 – Stage lighting 
bit 1 – Orchestra pit lighting 
bit 0 – Curtain lighting 

 
For example, if the house lighting, exit lighting, and stage lighting 

are all on, the value of the control byte should be 100101002. What 
mask would be used with the bitwise OR to turn on the aisle lighting 
and the emergency lighting? 

Solution 
The bitwise OR uses a mask where a one is in each position that 

needs to be turned on and zeros are placed in the positions meant to be 
left alone. To turn on the aisle lighting and emergency lighting, bits 5 
and 3 must be turned on while the remaining bits are to be left alone. 
This gives us a mask of 001010002. 

9.1.3 Toggling Bits 
We can also toggle or switch the value of individual bits from 1 to 0 

or vice versa. This is done using the bitwise XOR. Let's begin our 
discussion by examining the truth table for a two-input XOR. 
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Table 9-1   Truth Table for a Two-Input XOR Gate 

 

A B X 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
If we cover up the bottom two rows of this truth table leaving only 

the rows where A=0 visible, we see that the value of B is passed along 
to X, i.e., if A=0, then X equals B. If we cover up the rows where A=0 
leaving only the rows where A=1 visible, it looks like the inverse of B 
is passed to X, i.e., if A=1, then X equals the inverse of B. This 
discussion makes a two-input XOR gate look like a programmable 
inverter. If A is zero, B is passed through to the output untouched. If A 
is one, B is inverted at the output. 

Therefore, if we perform a bitwise XOR, the bit positions in the 
mask with zeros will pass the original value through and bit positions in 
the mask with ones will invert the original value. The example below 
uses the mask 001011102 to toggle bits 1, 2, 3, and 5 of a binary value 
while leaving the others untouched. 

 
Original value 1 0 0 1 0 1 1 0 

Mask 0 0 1 0 1 1 1 0 
Bitwise XOR 1 0 1 1 1 0 0 0 

Example 
Assume a byte is used to control the warning and indicator lights on 

an automotive dashboard. The following is a list of the bit positions and 
the dashboard lights they control. 

 
bit 7 – Oil pressure light 
bit 6 – Temperature light 
bit 5 – Door ajar light 
bit 4 – Check engine light

 bit 3 – Left turn indicator 
bit 2 – Right turn indicator 
bit 1 – Low fuel light 
bit 0 – High-beams light 

 
Determine the mask to be used with a bitwise XOR that when used 

once a second will cause the left and right turn indicators to flash when 
the emergency flashers are on. 
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Solution 
The bitwise XOR uses a mask with ones is in the positions to be 

toggled and zeros in the positions to be left alone. To toggle bits 3 and 
2 on and off, the mask should have ones only in those positions. 
Therefore, the mask to be used with the bitwise XOR is 000011002. 

9.2 Comparing Bits with XOR 
This brings us to our first method for detecting errors in data: 

comparing two serial binary streams to see if they are equal. Assume 
that one device is supposed to send a stream of bits to another device. 
An example of this might be a motion detector mounted in an upper 
corner of a room. The motion detector has either a zero output 
indicating the room is unoccupied or a one output indicating that 
something in the room is moving. The output from this motion detector 
may look like that shown in Figure 9-4. 

 
 
 
 
 

Figure 9-4   Possible Output from a Motion Detector 

To verify the output of the motion detector, a second motion 
detector could be mounted in the room so that the two separate outputs 
could be compared to each other. If the outputs are the same, the signal 
can be trusted; if they are different, then one of the devices is in error. 
At this point in our discussion, we won't know which one. 

 
 
 
 
 
 
 
 
 

Figure 9-5   A Difference in Output Indicates an Error 

logic 0 

logic 1 
unoccupied 

occupied

detector 2 

detector 1 

Difference indicates 
an error occurred
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A two-input XOR gate can be used here to indicate when an error 
has occurred. Remember that the output of a two-input XOR gate is a 
zero if both of the inputs are the same and a one if the inputs are 
different. This gives us a simple circuit to detect when two signals 
which should be identical are not. 

 
 
 

Figure 9-6   Simple Error Detection with an XOR Gate 

This circuit will be used later in this chapter to support more 
complex error detection and correction circuits. 

9.3 Parity 
One of the most primitive forms of error detection is to add a single 

bit called a parity bit to each piece of data to indicate whether the data 
has an odd or even number of ones. It is considered a poor method of 
error detection as it sometimes doesn't detect multiple errors. When 
combined with other methods of error detection, however, it can 
improve their overall performance. 

There are two primary types of parity: odd and even. Even parity 
means that the sum of the ones in the data element and the parity bit is 
an even number. With odd parity, the sum of ones in the data element 
and the parity bit is an odd number. When designing a digital system 
that uses parity, the designers decide in advance which type of parity 
they will be using. 

Assume that a system uses even parity. If an error has occurred and 
one of the bits in either the data element or the parity bit has been 
inverted, then counting the number of ones results in an odd number. 
From the information available, the digital system cannot determine 
which bit was inverted or even if only one bit was inverted. It can only 
tell that an error has occurred. 

One of the primary problems with parity is that if two bits are 
inverted, the parity bit appears to be correct, i.e., it indicates that the 
data is error free. Parity can only detect an odd number of bit errors. 

Some systems use a parity bit with each piece of data in memory. If 
a parity error occurs, the computer will generate a non-maskable 
interrupt, a condition where the operating system immediately 
discontinues the execution of the questionable application. 

Signal A
Signal B

Equals 1 when A≠B 
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Example 
Assume the table below represents bytes stored in memory along 

with an associated parity bit. Which of the stored values are in error? 
 

Data Parity 
1 0 0 1 0 1 1 0  0  
0 0 1 1 1 0 1 0  1  
1 0 1 1 0 1 0 1  1  
0 1 0 1 1 0 0 1  0  
1 1 0 0 0 1 0 1  1  

Solution 
To determine which data/parity combinations have an error, count 

the number of ones in each row. The rows with an odd sum have errors 
while the rows with an even sum are assumed to contain valid data. 

 
Data Parity  

1 0 0 1 0 1 1 0 0 4 ones – even  no error
0 0 1 1 1 0 1 0 1 5 ones – odd  Error! 
1 0 1 1 0 1 0 1 1 6 ones – even  no error
0 1 0 1 1 0 0 1 0 4 ones – even  no error
1 1 0 0 0 1 0 1 1 5 ones – odd  Error! 

9.4 Checksum 
For digital systems that store or transfer multiple pieces of data in 

blocks, an additional data element is typically added to each block to 
provide error detection for the block. This method of error detection is 
common, especially for the transmission of data across networks. 

One of the simplest implementations of this error detection scheme 
is the checksum. As a device transmits data, it takes the sum of all of 
the data elements it is transmitting to create an aggregate sum. This 
sum is called the datasum. The overflow carries generated by the 
additions are either discarded or added back into the datasum. The 
transmitting device then sends a form of this datasum appended to the 
end of the block. This new form of the datasum is called the checksum. 

As the data elements are received, they are added a second time in 
order to recreate the datasum. Once all of the data elements have been 
received, the receiving device compares its calculated datasum with the 
checksum sent by the transmitting device. The data is considered error 
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free if the receiving device's datasum compares favorably with the 
transmitted checksum. Figure 9-7 presents a sample data block and the 
datasums generated both by discarding the two carries and by adding 
the carries to the datasum. 
 

 
 
 
 

Figure 9-7   Sample Block of Data with Accompanying Datasums 

Upon receiving this transmission, the datasum for this data block 
must be calculated. Begin by taking the sum of all the data elements. 

 
3F16 + D116 + 2416 + 5A16 + 1016 + 3216 + 8916 = 25916 

 
The final datasum is calculated by discarding any carries that went 

beyond the byte width defined by the data block (5916) or by adding the 
carries to the final sum (5916 + 2 = 5B16). This keeps the datasum the 
same width as the data. The method of calculating the datasum where 
the carries are added to the sum is called the one's complement sum.  

The checksum shown for the data block in Figure 9-7 is only one of 
a number of different possible checksums for this data. In this case, the 
checksum was set equal to the expected datasum. If any of the data 
elements or if the checksum was in error, the datasum would not equal 
the checksum. If this happens, the digital system would know that an 
error had occurred. In the case of a network data transmission, it would 
request the data to be resent. 

The only difference between different implementations of the 
checksum method is how the datasum and checksum are compared in 
order to detect an error. As with parity, it is the decision of the designer 
as to which method is used. The type of checksum used must be agreed 
upon by both the transmitting and receiving devices ahead of time. The 
following is a short list of some of the different types of checksum 
implementations: 

 
• A block of data is considered error free if the datasum is equal to 

the checksum. In this case, the checksum element is calculated by 
taking the sum of all of the data elements and discarding any 
carries, i.e., setting the checksum equal to the datasum. 

3F16 D116 2416 5A16 1016 3216 8916 5916

Data 

Datasum
(discarded 

carries) 

5B16 

Datasum 
(added 
carries) 
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• A block of data is considered error free if the sum of the datasum 
and checksum results in a binary value with all ones. In this case, 
the checksum element is calculated by taking the 1's complement of 
the datasum. This method is called a 1's complement checksum. 

• A block of data is considered error free if the sum of the datasum 
and checksum results in a binary value with all zeros. In this case, 
the checksum element is calculated by taking the 2's complement of 
the datasum. This method is called a 2's complement checksum. 

 
As shown earlier, the basic checksum for the data block in Figure  

9-7 is 5916 (010110012). The 1's complement checksum for the same 
data block is equal to the 1's complement of 5916. 

 
1's complement of 5916 = 101001102 = A616 

 
The 2's complement checksum for the data block is equal to the 2's 
complement of 5916. 
 

2s complement of 5916 = 101001112 = A716 

Example 
Determine if the data block and accompanying checksum below are 

error free. The data block uses a 1's complement checksum. 
 

Data Checksum 
0616 0016 F716 7E16 0116 5216  3116  

Solution 
First, calculate the datasum by adding all the data elements in the 

data block. 
 
 
 
 
 

 
This gives us a datasum of CE16. If we add this to the checksum 3116 

we get CE16 + 3116 = FF16, which tells us the data block is error free. 
There is a second way to check this data. Instead of adding the 

datasum to the checksum, you can use the datasum to recalculate the 

0616
+ 0016

0616

0616
+ F716

FD16

FD16
+ 7E16

17B16

7B16
+ 0116

7C16

7C16
+ 5216

CE16
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checksum and compare the result with the received checksum. Taking 
the 1's complement of CE16 gives us: 

 
CE16 = 110011102 
1's complement of CE16 = 0011000012 = 3116 

Example 
Write a C program to determine the basic checksum, 1's complement 

checksum, and 2's complement checksum for the data block 0716, 0116, 
2016, 7416, 6516, 6416, 2E16. 

Solution 
Before we get started on this code, it is important to know how to 

take a 1's complement and a 2's complement in C. The 1's complement 
uses a bitwise not operator '~'. By placing a '~' in front of a variable or 
constant, the bitwise inverse or 1's complement is returned. Since most 
computers represent negative numbers with 2's complement notation, 
the 2's complement is calculated by placing a negative sign in front of 
the variable or constant. 

The code below begins by calculating the datasum. It does this with 
a loop that adds each value from the array of data values to a variable 
labeled datasum. After each addition, any potential carry is stripped off 
using a bitwise AND with 0xff. This returns the byte value. 

Once the datasum is calculated, the three possible checksum values 
can be calculated. The first one is equal to the datasum, the second is 
equal to the bitwise inverse of the datasum, and the third is equal to the 
2's complement of the datasum. 

 
int datasum=0; 
int block[] = {0x07, 0x01, 0x20, 0x74,  
               0x65, 0x64, 0x2E}; 
 
// This for-loop adds all of the data elements 
for(int i=0; i < sizeof(block)/sizeof(int); i++) 
 datasum += block[i]; 
 
// The following line discards potential carries 
datasum &= 0xff; 
// Compute each of the three types of checksums 
int basic_checksum = datasum; 
int ones_compl_checksum = 0xff&(~datasum); 
int twos_compl_checksum = 0xff&(-datasum); 
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If we execute this code with the appropriate output statements, we 
get the following three values for the checksums. 
 
The basic checksum is 93 
The 1's complement checksum is 6c 
The 2's complement checksum is 6d 

9.5 Cyclic Redundancy Check 
The problem with using a checksum for error correction lies in its 

simplicity. If multiple errors occur in a data stream, it is possible that 
they may cancel each other out, e.g., a single bit error may subtract 4 
from the checksum while a second error adds 4. If the width of the 
checksum character is 8 bits, then there are 28 = 256 possible 
checksums for a data stream. This means that there is a 1 in 256 chance 
that multiple errors may not be detected. These odds could be reduced 
by increasing the size of the checksum to 16 or 32 bits thereby 
increasing the number of possible checksums to 216 = 65,536 or 232 = 
4,294,967,296 respectively. 

Assume Figure 9-8 represents a segment of an integer number line 
where the result of the checksum is identified. A minor error in one of 
the values may result in a small change in the checksum value. Since 
the erroneous checksum is not that far from the correct checksum, it is 
easy for a second error to put the erroneous checksum back to the 
correct value indicating that there hasn't been an error when there 
actually has been one. 

 
 
 
 
 
 

Figure 9-8   Small Changes in Data Canceling in Checksum 

What we need is an error detection method that generates vastly 
different values for small errors in the data. The checksum algorithm 
doesn't do this which makes it possible for two bit changes to cancel 
each other in the sum.  

A cyclic redundancy check (CRC) uses a basic binary algorithm 
where each bit of a data element modifies the checksum across its 

Valid checksum

First error makes only minor 
change in checksum 

Second error can 
easily mask first error.



180   Computer Organization and Design Fundamentals 
 

entire length regardless of the number of bits in the checksum. This 
means that an error at the bit level modifies the checksum so 
significantly that an equal and opposite bit change in another data 
element cannot cancel the effect of the first. 

First, calculation of the CRC checksum is based on the remainder 
resulting from a division rather than the result of an addition. For 
example, the two numbers below vary only by one bit. 

 
0111 1010 1101 11002 = 31,45210 
0111 1011 1101 11002 = 31,70810 

 
The checksums at the nibble level are: 
 

0111 + 1010 + 1101 + 1100 = 10102 = 1010 
0111 + 1011 + 1101 + 1100 = 10112 = 1110 

These two values are very similar, and a bit change from another nibble 
could easily cancel it out. 

If, on the other hand, we use the remainder from a division for our 
checksum, we get a wildly different result for the two values. For the 
sake of an example, let's divide both values by 910. 

 
31,452 ÷ 9 = 3,494 with a remainder of 6 = 01102 
31,708 ÷ 9 = 3,523 with a remainder of 1 = 00012 

 
This is not a robust example due to the fact that 4 bits only have 16 

possible bit patterns, but the result is clear. A single bit change in one 
of the data elements resulted in a single bit change in the addition 
result. The same change, however, resulted in three bits changing in the 
division remainder. 

The problem is that division in binary is not a quick operation. For 
example, Figure 9-9 shows the long division in binary of 31,45210 = 
01111010110111002 by 910 = 10012. The result is a quotient of 
1101101001102 = 3,49410 with a remainder of 1102 = 610. 

Remember that the goal is to create a checksum that can be used to 
check for errors, not to come up with a mathematically correct result. 
Keeping this in mind, the time it takes to perform a long division can be 
reduced by removing the need for "borrows". This would be the same 
as doing an addition while ignoring the carries. The truth table in Table 
9-2 shows the single bit results for both addition and subtraction when 
carries and borrows are ignored. 
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  110110100110 
1001 0111101011011100
 -1001 
   1100 
  -1001 
     1110 
    -1001 
      1011 
     -1001 
        1010 
       -1001 
           1111 
          -1001 
            1100 
           -1001 
              110

Figure 9-9   Example of Long Division in Binary 

Table 9-2   Addition and Subtraction Without Carries or Borrows 

A B  A+B A – B 
0 0  0  0 
0 1  1  1 (no borrow) 
1 0  1  1 
1 1  0 (no carry)  0 

 
The A + B and A – B columns of the truth table in Table 9-2 should 

look familiar; they are equivalent to the XOR operation. This means 
that a borrow-less subtraction is nothing more than a bitwise XOR. 
Below is an example of an addition and a subtraction where there is no 
borrowing. Note that an addition without carries produces the identical 
result as a subtraction without borrows. 

 
 11011010         11011010 
+01101100        -01101100 
 10110110         10110110 

 
There is a problem when trying to apply this form of subtraction to 

long division: an XOR subtraction doesn't care whether one number is 
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larger than another. For example, 11112 could be subtracted from 00002 
with no ill effect. In long division, you need to know how many digits 
to pull down from the dividend before subtracting the divisor. 

To solve this, the assumption is made that one value can be 
considered "larger" than another if the bit position of its highest logic 1 
is the same or greater than the bit position of the highest logic 1 in the 
second number. For example, the subtractions 10110 – 10011 and  
0111 – 0011 are valid while 0110 – 1001 and 01011 – 10000 are not. 

Figure 9-10 repeats the long division of Figure 9-9 using borrow-
less subtractions. It is a coincidence that the resulting remainder is the 
same for the long division of Figure 9-9. This is not usually true. 

 
  111010001010 
1001 0111101011011100
 -1001 
   1100 
  -1001 
    1011 
   -1001 
      1001 
     -1001 
         01011 
         -1001 
            1010 
           -1001 
              110

Figure 9-10   Example of Long Division Using XOR Subtraction 

Since addition and subtraction without carries or borrows are 
equivalent to a bitwise XOR, we should be able to reconstruct the 
original value from the quotient and the remainder using nothing but 
XORs. Table 9-3 shows the step-by-step process of this reconstruction. 
The leftmost column of the table is the bit-by-bit values of the binary 
quotient of the division of Figure 9-10.  

Starting with a value of zero, 10012 is XORed with the result in the 
second column when the current bit of the quotient is a 1. The result is 
XORed with 00002 if the current bit of the quotient is a 0. The 
rightmost column is the result of this XOR. Before going to the next bit 
of the quotient, the result is shifted left one bit position. Once the end 
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of the quotient is reached, the remainder is added. This process brings 
back the dividend using a multiplication of the quotient and divisor.  

Table 9-3   Reconstructing the Dividend Using XORs 

Quotient 
(Q) 

Result from  
previous step 

shifted left one bit 

XOR Value 
Q=0: 0000 
Q=1: 1001 

XOR result 

1 0 1001 1001 
1 10010 1001 11011 
1 110110 1001 111111 
0 1111110 0000 1111110 
1 11111100 1001 11110101 
0 111101010 0000 111101010 
0 1111010100 0000 1111010100 
0 11110101000 0000 11110101000 
1 111101010000 1001 111101011001 
0 1111010110010 0000 1111010110010 
1 11110101100100 1001 11110101101101 
0 111101011011010 0000 111101011011010 

Add remainder to restore the dividend:  
111101011011010 + 110 = 111101011011100 

Example 
Perform the long division of 11001101101010112 by 10112 in binary 

using the borrow-less subtraction, i.e., XOR function. 

Solution 
Using the standard "long-division" procedure with the XOR 

subtractions, we divide 10112 into 11001101101010112. Table 9-4 
checks our result using the technique shown in Table 9-3. Since we 
were able to recreate the original value from the quotient and 
remainder, the division must have been successful.  

Note that in Table 9-4 we are reconstructing the original value from 
the quotient in order to demonstrate the application of the XOR in this 
modified division and multiplication. This is not a part of the CRC 
implementation. In reality, as long as the sending and receiving devices 
use the same divisor, the only result of the division that is of concern is 
the remainder. As long as the sending and receiving devices obtain the 
same results, the transmission can be considered error free. 
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  1110101001111 
1011  1100110110101011
 -1011 
   1111 
  -1011 
    1001 
   -1011 
      1001 
     -1011 
        1010 
       -1011 
           1101 
          -1011 
            1100 
           -1011 
             1111 
            -1011 
              1001
             -1011
               010

Table 9-4   Second Example of Reconstructing the Dividend 

Quotient 
(Q) 

Result from  
previous step 

shifted left one bit 

XOR Value 
Q=0: 0000 
Q=1: 1011 

XOR result 

1 0 1011 1011 
1 10110 1011 11101 
1 111010 1011 110001 
0 1100010 0000 1100010 
1 11000100 1011 11001111 
0 110011110 0000 110011110 
1 1100111100 1011 1100110111 
0 11001101110 0000 11001101110 
0 110011011100 0000 110011011100 
1 1100110111000 1011 1100110110011 
1 11001101100110 1011 11001101101101 
1 110011011011010 1011 110011011010001 
1 1100110110100010 1011 1100110110101001 

Add remainder to restore the dividend: 
1100110110101001 + 010 = 1100110110101011 
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9.5.1 CRC Process  
The primary difference between different CRC implementations is 

the selection of the divisor or polynomial as it is referred to in the 
industry. In the example used in this discussion, we used 10012, but this 
is by no means a standard value. Divisors of different bit patterns and 
different bit lengths perform differently. The typical divisor is 17 or 33 
bits, but this is only because of the standard bit widths of 16 and 32 bits 
in today's processor architectures. A few divisors have been selected as 
performing better than others, but a discussion of why they perform 
better is beyond the scope of this text. 

There is, however, a relationship between the remainder and the 
divisor that we do wish to discuss here. We made an assumption earlier 
in this section about how to decide whether one value is larger than 
another with regards to XOR subtraction. This made it so that in an 
XOR division, a subtraction from an intermediate value is possible only 
if the most significant one is in the same bit position as the most 
significant one of the divisor. This is true all the way up to the final 
subtraction which produces the remainder. These most significant ones 
cancel leaving a zero in the most significant bit position of each result 
including the remainder. Since the MSB is always a zero for the result 
of every subtraction in an XOR division, each intermediate result along 
with the final remainder must always be at least one bit shorter in 
length than the divisor. 

There is another interesting fact about the XOR division that is a 
direct result of the borrow-less subtraction, and the standard method of 
CRC implementation has come to rely on this fact. Assume that we 
have selected an n-bit divisor. The typical CRC calculation begins by 
appending n-1 zeros to the end of the data (dividend). After we divide 
this new data stream by the divisor to compute the remainder, the 
remainder is added to the end of the new data stream effectively 
replacing the n-1 zeros with the value of the remainder. 

Remember that XOR addition and subtraction are equivalent. 
Therefore, by adding the remainder to the end of the data stream, we 
have effectively subtracted the remainder from the dividend. This 
means that when we divide the data stream (which has the remainder 
added/subtracted) by the same divisor, the new remainder should 
equal zero. Therefore, if the receiving device generates a remainder of 
zero after dividing the entire data stream with the polynomial, the 
transmission was error-free. The following example illustrates this. 
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Example 
Generate the CRC checksum to be transmitted with the data stream 

10110110100101102 using the divisor 110112. 

Solution 
With a 5 bit divisor, append 5 – 1 = 4 zeros to the end of the data.  
 

 New data stream = "1011011110010110" + "0000" 
  = "10110111100101100000" 

 
Finish by computing the CRC checksum using XOR division. 
 

  1100001010110010 
11011  10110111100101100000
 -11011 
   11011 
  -11011 
       011100 
       -11011 
          11110 
         -11011 
            10111 
           -11011 
             11000 
            -11011 
                11000 
               -11011 
                  0110

 
The data stream sent to the receiving device becomes the original 

data stream with the 4-bit remainder appended to it. 
 

 Transmitted data stream = "1011011110010110" + "0110" 
  = "10110111100101100110" 

 
If the receiver divides the entire data stream by the same divisor 

used by the transmitting device, i.e., 110112, the remainder will be zero. 
This is shown in the following division. If this process is followed, the 
receiving device will calculate a zero remainder any time there is no 
error in the data stream. 
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  1100001010110010 
11011  10110111100101100110
 -11011 
   11011 
  -11011 
       011100 
       -11011 
          11110 
         -11011 
            10111 
           -11011 
             11000 
            -11011 
                11011 
               -11011 
                    00

9.5.2 CRC Implementation 
Up to now, the discussion has focused on the mathematics behind 

creating and using CRC checksums. As for the implementation of a 
CRC checksum, programmers use the following process: 

 
• A single n-bit divisor is defined. Both the sending and receiving 

devices use the same n-bit divisor. 
• The sending device adds n-1 zeros to the end of the data being sent, 

and then performs the XOR division in order to obtain the 
remainder. The quotient is thrown away. 

• The sending device takes the original data (without the n–1 zeros) 
and appends the n–1 bit remainder to the end. This is the same as 
subtracting the remainder from the data with the appended zeros. 

• The data and appended remainder is sent to the receiving device. 
• The receiving device performs an XOR division on the received 

message and its appended n–1 bit remainder using the same divisor. 
• If the result of the receiver's XOR division is zero, the message is 

considered error free. Otherwise, the message is corrupted. 
 
A number of CRC divisors or polynomials have been defined for 

standard implementations. For example, the CRC-CCITT divisor is the 
17-bit polynomial 1102116 while the divisor used in IEEE 802.3 
Ethernet is the 33-bit polynomial 104C11DB716. 
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As for implementing the XOR division, most data streams are far 
too large to be contained in a single processor register. Therefore, the 
data stream must be passed through a register that acts like a window 
revealing only the portion of the stream where the XOR subtraction is 
being performed. This is the second benefit of using the bitwise XOR. 
Without the XOR subtraction, the whole dividend would need to be 
contained in a register in order to support the borrow function. 

Remember that the MSB of both the intermediate value and the 
divisor in an XOR subtraction are always 1. This means that the MSB 
of the subtraction is unnecessary as it always result in a zero. 
Therefore, for an n-bit divisor or polynomial, only an n-1 bit register is 
needed for the XOR operation. 

The code presented in Figure 9-11 appends four zeros to the end of a 
32-bit data stream (data_stream), then performs an XOR division on it 
with the 5-bit polynomial 101112 (poly). The division is done in a 
division register (division_register). This division register in theory 
should only be four bits wide, but since there is no four bit integer type 
in C, an 8-bit char is used. After every modification of the division 
register, a bitwise AND is performed on it with the binary mask 11112 
in order to strip off any ones that might appear above bit 3. The binary 
mask is labeled division_mask. 

Running this code with a 32-bit constant assigned to the variable 
data_stream will produce the four-bit CRC checksum 00102 for the 
polynomial 101112.  

There are better ways to implement the CRC algorithm. This code is 
presented only to show how the division register might work. 

9.6 Hamming Code 
Errors can also occur in memory. One possibility is that a defect or a 

failure in the hardware could cause a memory cell to be un-writable. 
Random errors might also be caused by an electrical event such as 
static electricity or electromagnetic interference causing one or more 
bits to flip. Whatever the cause, we need to be able to determine if the 
data we are reading is valid. 

One solution might be to store an additional bit with each data byte. 
This bit could act as a parity bit making it so that the total number of 
ones stored in each memory location along with the corresponding 
parity bit is always even. When it is time to read the data, the number 
of ones in the in the data and the parity bit are counted. If an odd result 
occurs, we know that there was an error.  
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// This code generates a four-bit CRC from a 32 bit  
// data stream by passing it through a four-bit  
// division register where it is XORed with the last  
// four bits of a five bit polynomial 
__int32 data_stream = 0x48376dea; // Data stream 
#define poly 0x17                 // Polynomial=10111 
 
// The XOR is performed in a char variable which will  
// then be AND'ed with a 4-bit mask to clear the fifth  
// bit. A mask allowing us to check for a fifth bit is  
// also defined here. 
char division_register = 0; 
#define division_mask 0xf 
#define division_MSB 0x10 
 
// We will need to count how many times we've shifted 
// the data stream so that we know when we are done. 
// For a 32 bit stream, we need to shift 32+4 times. 
int shift_count = 0; 
#define shift_total (32+4) 
  
__int32 temp_ds = data_stream; 
while (shift_count < shift_total) 
{ 
// The following code shifts bits into the division  
// register from the data stream until a bit overflows  
// past the length of the division register. Once this  
// bit overflows, we know we have loaded a value from  
// which the polynomial can be subtracted. 
   while ((!(division_register & division_MSB)) 
      &&(shift_count < shift_total)) 
   { 
      division_register <<= 1; 
      if((temp_ds & 0x80000000) != 0) 
         division_register+=1; 
      temp_ds <<= 1; 
      shift_count++; 
   } 
   division_register &= division_mask; 
// If we have a value large enough to XOR with the  
// polynomial, then we should do a bitwise XOR 
   if(shift_count < shift_total) 
      division_register ^= (poly & division_mask); 
}  
printf("The four-bit CRC for the 32 bit data stream  
        0x%x using the polynomial 0x%x is 0x%x.\n",  
        data_stream, poly, division_register); 

Figure 9-11   Sample Code for Calculating CRC Checksums 
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As mentioned before, parity is not a very robust error checking 
method. If two errors occur, the parity still appears correct. In addition, 
it might be nice to detect and correct the error. 

One way to do this is to use multiple parity bits, each bit responsible 
for the parity of a smaller, overlapping portion of the data. For 
example, we could use four parity bits to represent the parity of four 
different groupings of the four bits of a nibble. Table 9-5 shows how 
this might work for the four-bit value 10112. Each row of the table 
groups three of the four bits of the nibble along with a parity bit, Pn. 
The value shown for the parity bit makes the sum of all the ones in the 
grouping of three bits plus parity an even number. 

Table 9-5   Data Groupings and Parity for the Nibble 10112 

 Data Bits Parity Bits 
 D3=1 D2=0 D1=1 D0=1 P0 P1 P2 P3 
Group A 1 0 1  0    
Group B 1  1 1  1   
Group C 1 0  1   0  
Group D  0 1 1    0 

 
In memory, the nibble would be stored with its parity bits in an eight-
bit location as 101101002. 

Now assume that the bit in the D1 position which was originally a 1 
is flipped to a 0 causing an error. The new value stored in memory 
would be 100101002. Table 9-6 duplicates the groupings of Table  
9-5 with the new value for D1. The table also identifies groups that 
incur a parity error with the data change.  

Table 9-6   Data Groupings with a Data Bit in Error 

 Data Bits Parity Bits Parity Result
 D3=1 D2=0 D1=0 D0=1 P0 P1 P2 P3  
Group A 1 0 0  0    Odd – Error 
Group B 1  0 1  1   Odd – Error 
Group C 1 0  1   0  Even – Okay
Group D  0 0 1    0 Odd – Error 
 
Note that parity is now in error for groups A, C, and D. Since the D1 

position is the only bit that belongs to all three of these groups, then a 
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processor checking for errors would not only know that an error had 
occurred, but also in which bit it had occurred. Since each bit can only 
take on one of two possible values, then we know that flipping the bit 
D1 will return the nibble to its original data. 

If an error occurs in a parity bit, i.e., if P3 is flipped, then only one 
group will have an error. Therefore, when the processor checks the 
parity of the four groups, a single group with an error indicates that it is 
a parity bit that has been changed and the original data is still valid. 

Table 9-7   Data Groupings with a Parity Bit in Error 

 Data Bits Parity Bits Parity Result
 D3=1 D2=0 D1=1 D0=1 P0 P1 P2 P3  
Group A 1 0 1  0    Even – Okay
Group B 1  1 1  1   Even – Okay
Group C 1 0  1   0  Even – Okay
Group D  0 1 1    1 Odd – Error 
 
It turns out that not all four data groupings are needed. If we only 

use groups A, B, and C, we still have the same level of error detection, 
but we do it with one less parity bit. Continuing our example without 
Group D, if our data is error-free or if a single bit error has occurred, 
one of the following eight situations is true. 

Table 9-8   Identifying Errors in a Nibble with Three Parity Bits 

Groups with bad parity Bit in error
None Error-free 

A P0 
B P1 
C P2 

A and B D1 
A and C D2 
B and C D0 

A, B, and C D3 
 
The use of multiple parity bits to "code" an error correction scheme 

for data bits is called the Hamming Code. It was developed by Richard 
Hamming during the late 1940's when he worked at Bell Laboratories. 
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The Hamming Code can be shown graphically using a Venn 
diagram. We begin by creating three overlapping circles, one circle for 
each group. Each of the parity bits Pn is placed in the portion of their 
corresponding circle that is not overlapped by any other circle. D0 is 
placed in the portion of the diagram where circles B and C overlap, D1 
goes where circles A and B overlap, and D2 goes where circles A and C 
overlap. Place D3 in the portion of the diagram where all three circles 
overlap. Figure 9-12 presents just such an arrangement. 

 
 
 
 
 
 

Figure 9-12   Venn Diagram Representation of Hamming Code 

Figure 9-13a uses this arrangement to insert the nibble 10112 into a 
Venn diagram. Figures 9-13b, c, and d show three of the seven possible 
error conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9-13   Example Single-Bit Errors in Venn Diagram 

P0 P1

P2

D2 D0
D3

D1

Circle C

Circle A Circle B

0 1 

0

0 1 
1
1

a.)  Error-free condition 

C 

A B 
1 1

0

0 1
1
1

b.)  Parity error in circle A 

C

A B

0 1 

0

1 1 
1
1

c.)  Parity errors in A & C

C 

A B 
0 1

0

0 1
0
1

d.) Parity errors in A, B, & C 

C

A B
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In 9-13b, a single error in circle A indicates only the parity bit P0 is 
in error. In 9-13c, since both circles A and C have errors, then the bit 
change must have occurred in the region occupied only by A and C, 
i.e., where D2 is located. Therefore, D2 should be 0. Lastly, in 9-13d, an 
error in all three circles indicates that there has been a bit change in the 
region shared by all three circles, i.e., in bit D3. Therefore, we know 
that bit D3 is in error. Each of these errors can be corrected by inverting 
the value of the bit found in error. 

Double errors, however, cannot be detected correctly with this 
method. In Figure 9-14b, both the parity bit P1 and the data bit D0 are in 
error. If we do a parity check on each of the three circles in this Venn 
diagram, we find erroneous parity only in circle C. This would indicate 
that only the parity bit P2 is in error. This is a problem because it 
incorrectly assumes the data 10102 is correct. 

This is a problem. Apparently, this error checking scheme can detect 
when a double-bit error occurs, but if we try to correct it, we end up 
with erroneous data. We need to expand our error detection scheme to 
be able to detect and correct single bit errors and distinguish them from 
double bit errors. 

 
 
 
 
 
 
 
 
 

Figure 9-14   Example of a Two-Bit Error 

This can be done by adding one more bit that acts as a parity check 
for all seven data and parity bits. Figure 9-15 represents this new bit 
using the same example from Figure 9-14. 

If a single-bit error occurs, then after we go through the process of 
correcting the error, this new parity bit will be correct. If, however, 
after we go through the process of correcting the error and the new 
parity bit is in error, then it can be assumed that a double-bit error has 
occurred and that correction is not possible. This is called Single-Error 
Correction/Doubled-Error Detection. 

0 1 

0 

0 1 
1 
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a.)  Error-free condition
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A B 
0 0

0

0 0
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b.)  Two-Bit Error Condition 

C
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Figure 9-15   Using Parity to Check for Double-Bit Errors 

This error detection and correction scheme can be expanded to any 
number of bits. All we need to do is make sure there are enough parity 
bits to cover the error-free condition plus any possible single-bit error 
in the data or the parity. For example, in our four data bit and three 
parity bit example above, there can be one of seven single bit errors. 
Add the error-free condition and that makes eight possible conditions 
that must be represented with parity bits. Since there are three parity 
bits, then there are 23 = 8 possible bit patterns represented using the 
parity bits, one for each of the outcomes. 

For the general case, we see that p parity bits can uniquely identify 
2p – 1 single-bit errors. Note that the one is subtracted from 2p to 
account for the condition where there are no errors. If 2p – 1 is less than 
the number of data bits, n, plus the number of parity bits, p, then we 
don't have enough parity bits. This relationship is represented with 
equation 9-1. 

 
 p + n < 2p – 1 (9.1) 
 
 Table 9-9 presents a short list of the number of parity bits that are 

required for a specific number of data bits. To detect double-bit errors, 
an additional bit is needed to check the parity of all of the p + n bits. 

Let's develop the error-checking scheme for 8 data bits. Remember 
from the four-bit example that there were three parity checks:  

 
• P0 was the parity bit for data bits for D1, D2, and D3; 
• P1 was the parity bit for data bits for D0, D1, and D3; and 
• P2 was the parity bit for data bits for D0, D2, and D3. 
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Table 9-9   Parity Bits Required for a Specific Number of Data Bits 

Number of 
data bits (n)

Number of 
parity bits (p)

p + n 2p – 1 

4 3 7 7 
8 4 12 15 
16 5 21 31 
32 6 38 63 
64 7 71 127 
128 8 136 255 

 
In order to check for a bit error, the sum of ones for each of these 

groups is taken. If all three sums result in even values, then the data is 
error-free. The implementation of a parity check is done with the XOR 
function. Remember that the XOR function counts the number of ones 
at the input and outputs a 1 for an odd count and a 0 for an even count. 
This means that the three parity checks we use to verify our four data 
bits can be performed using the XOR function. Equations 9.2, 9.3, and 
9.4 show how these three parity checks can be done. The XOR is 
represented here with the symbol ⊕. 

 
Parity check for group A = P0 ⊕ D1 ⊕ D2 ⊕ D3 (9.2) 
Parity check for group B = P1 ⊕ D0 ⊕ D1 ⊕ D3 (9.3) 
Parity check for group C = P2 ⊕ D0 ⊕ D2 ⊕ D3 (9.4) 
 
The data bits of our four-bit example were D3 = 1, D2 = 0, D1 = 1, 

and D0 = 1 while the parity bits were P0 = 0, P1 = 1, and P2 = 0. 
Substituting these into equations 9.2, 9.3, and 9.4 gives us: 

 
Parity check for group A = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0 
Parity check for group B = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0  
Parity check for group C = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0  
 
Assume that a single-bit error has occurred. If the single-bit error 

was a parity bit, then exactly one of the parity checks will be one while 
the others are zero. For example, if P0 changed from a 0 to a 1, we 
would get the following parity checks. 
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Parity check for group A = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 
Parity check for group B = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0  
Parity check for group C = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0  
 
The single parity bit error reveals itself as a single parity check 

outputting a 1. If, however, a data bit changed, then we have more than 
one parity check resulting in a 1. Assume, for example, that D1 changed 
from a 1 to a 0. 

 
Parity check for group A = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1 
Parity check for group B = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1  
Parity check for group C = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0  
 
Since D1 is the only bit that belongs to both the parity check of 

groups A and B, then D1 must have been the one to have changed. 
Using this information, we can go to the eight data bit example. 

With four parity bits, we know that there will be four parity check 
equations, each of which will have a parity bit that is unique to it. 

 
Parity check A = P0 ⊕ (XOR of data bits of group A) 
Parity check B = P1 ⊕ (XOR of data bits of group B)  
Parity check C = P2 ⊕ (XOR of data bits of group C)  
Parity check D = P3 ⊕ (XOR of data bits of group D) 
 
The next step is to figure out which data bits, D0 through D7, belong 

to which groups. Each data bit must have a unique membership pattern 
so that if the bit changes, its parity check will result in a unique pattern 
of parity check errors. Note that all of the data bits must belong to at 
least two groups to avoid an error with that bit looking like an error 
with the parity bit. 

Table 9-10 shows one way to group the bits in the different parity 
check equations or groups. It is not the only way to group them. 

By using the grouping presented in Table 9-10, we can complete our 
four parity check equations. 

 
Parity check A = P0 ⊕ D0 ⊕ D1 ⊕ D3 ⊕ D4 ⊕ D6 (9.5) 
Parity check B = P1 ⊕ D0 ⊕ D2 ⊕ D3 ⊕ D5 ⊕ D6 (9.6) 
Parity check C = P2 ⊕ D1 ⊕ D2 ⊕ D3 ⊕ D7 (9.7) 
Parity check D = P3 ⊕ D4 ⊕ D5 ⊕ D6 ⊕ D7 (9.8) 
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Table 9-10   Membership of Data and Parity Bits in Parity Groups 

 Parity check group
 A B C D 

P0 ×    
P1  ×   
P2   ×  
P3    × 
D0 × ×   
D1 ×  ×  
D2  × ×  
D3 × × ×  
D4 ×   × 
D5  ×  × 
D6 × ×  × 
D7   × × 

 
When it comes time to store the data, we will need 12 bits, eight for 

the data and four for the parity bits. But how do we calculate the parity 
bits?  Remember that the parity check must always equal zero. 
Therefore, the sum of the data bits of each parity group with the parity 
bit must be an even number. Therefore, if the sum of the data bits by 
themselves is an odd number, the parity bit must equal a 1, and if the 
sum of the data bits by themselves is an even number, the parity bit 
must equal a 0. This sounds just like the XOR function again. 
Therefore, we use equations 9.9, 9.10, 9.11, and 9.12 to calculate the 
parity bits before storing them. 

 
P0 = D0 ⊕ D1 ⊕ D3 ⊕ D4 ⊕ D6 (9.9) 
P1 = D0 ⊕ D2 ⊕ D3 ⊕ D5 ⊕ D6 (9.10) 
P2 = D1 ⊕ D2 ⊕ D3 ⊕ D7 (9.11) 
P3 = D4 ⊕ D5 ⊕ D6 ⊕ D7 (9.12) 

 
Now let's test the system. Assume we need to store the data 

100111002. This gives us the following values for our data bits: 
 

D7 = 1 D6 = 0 D5 = 0 D4 = 1 D3 = 1 D2 = 1 D1 = 0 D0 = 0
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The first step is to calculate our parity bits. Using equations 9.9, 
9.10, 9.11, and 9.12 we get the following values. 

 
P0 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0 
P1 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0 
P2 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 
P3 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 

 
Once again, the XOR is really just a parity check. Therefore, if there 

is an odd number of ones, the result is 1 and if there is an even number 
of ones, the result is 0.  

Now that the parity bits have been calculated, the data and parity 
bits can be stored together. This means that memory will contain the 
following value: 

 
D7 D6 D5 D4 D3 D2 D1 D0 P0 P1 P2 P3 
1 0 0 1 1 1 0 0 0 0 1 0 

 
If our data is error free, then when we read it and substitute the 

values for the data and parity bits into our parity check equations, all 
four results should equal zero. 

 
Parity check A = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0 
Parity check B = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0 
Parity check C = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 0 
Parity check D = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 

 
If, however, while the data was stored in memory, it incurs a single-

bit error, e.g., bit D6 flips from a 0 to a 1, then we should be able to 
detect it. If D6 does flip, the value shown below is what will be read 
from memory, and until the processor checks the parity, we don't know 
that anything is wrong with it. 

 
D7 D6 D5 D4 D3 D2 D1 D0 P0 P1 P2 P3 
1 1 0 1 1 1 0 0 0 0 1 0 

 
Start by substituting the values for the data and parity bits read from 

memory into our parity check equations. Computing the parity for all 
four groups shows that an error has occurred. 
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Parity check A = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 
Parity check B = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 
Parity check C = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 0 
Parity check D = 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1 

 
Since we see from Table 9-10 that the only bit that belongs to parity 

check groups A, B, and D is D6, then we know that D6 has flipped and 
we need to invert it to return to our original value. 

The same problem appears here as it did in the nibble case if there 
are two bit errors. It is solved here the same way as it was for the nibble 
application. By adding a parity bit representing the parity of all twelve 
data and parity bits, then if one of the group parities is wrong but the 
overall parity is correct, we know that a double-bit error has occurred 
and correction is not possible. 

9.7 What's Next? 
In this chapter we've discussed how to correct errors that might 

occur in memory without having discussed the technologies used to 
store data. Chapter 10 begins our discussion of storing data by 
examining the memory cell, a logic element capable of storing a single 
bit of data. 

Problems 
1. Using an original value of 110000112 and a mask of 000011112, 

calculate the results of a bitwise AND, a bitwise OR, and a bitwise 
XOR for these values. 

2. Assume that the indicators of an automotive dashboard are 
controlled by an 8-bit binary value named dash_lights. The table 
below describes the function of each bit. Assume that a '1' turns on 
the light corresponding to that bit position and a '0' turns it off. 

D0 Low fuel  D4 Left turn signal 
D1 Oil pressure  D5 Right turn signal 
D2 High temperature  D6 Brake light 
D3 Check engine  D7 Door open 

 
For each of the following situations, write the line of code that uses 
a bitwise operation to get the desired outcome. 
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a.) Turn on the low fuel, oil pressure, high temperature, check 
engine, and brake lights without affecting any other lights. This 
would be done when the ignition key is turned to start. 

b.) Toggle both the right and left turn signals as if the flashers 
were on without affecting any other lights. 

c.) Turn off the door open light when the door is closed. 
 

3. True or False:  A checksum changes if the data within the data 
block is sorted differently. 

4. There are two ways of handling the carries that occur when 
generating the datasum for a checksum. One way is to simply 
discard all carries. What is the other way? (2 points) 

5. Compute the basic checksum, the 1's complement checksum, and 
the 2's complement checksum for each of the following groups of 
8-bit data elements using both the basic calculation of the datasum 
and the one's complement datasum. All data is in hexadecimal. 
a.) 34, 9A, FC, 28, 74, 45 
b.) 88, 65, 8A, FC, AC, 23, DC, 63 
c.) 00, 34, 54, 23, 5C, F8, F1, 3A, 34 
 

6. Use the checksum to verify each of the following groups of 8-bit 
data elements. All of the data is represented in hexadecimal. 
a.) 54, 47, 82, CF, A9, 43   basic checksum = D8 
b.) 36, CD, 32, CA, CF, A8, 56, 88   basic checksum = 55 
c.) 43, A3, 1F, 8F, C5, 45, 43   basic checksum = E1 
 

7. Identify the two reasons for using the XOR "borrow-less" 
subtraction in the long-division used to calculate the CRC. 

8. What problem does the checksum error correction method have that 
is solved by using CRCs? 

9. True or False:  A CRC changes if the data within the data block is 
sorted differently. 

10. True or False:  By using the CRC process where the transmitting 
device appends the remainder to the end of the data stream, the 
remainder calculated by the receiving device should be zero. 

11. How many possible CRC values (i.e., remainders) are possible with 
a 33-bit polynomial? 
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12. Assume each of the following streams of bits is received by a 
device and that each of the streams has appended to it a CRC 
checksum. Using the polynomial 10111, check to see which of the 
data streams are error free and which are not. 
a.) 1001011101011001001 
b.) 101101010010110100100101 
c.) 11010110101010110111011011011 
 

13. Compute the number of parity bits needed to provide single-bit 
error correction for 256 bits of data.  

14. Using the error detection/correction equations 9.5 through 9.8, 
determine the single-bit error that would result from the following 
parity check values. 

 Results of parity check 
 a.) b.) c.) d.) 
Parity check A 1 1 0 1 
Parity check B 1 1 0 0 
Parity check C 1 0 1 1 
Parity check D 0 1 0 0 

 

15. Using the programming language of your choice, implement the 
parity generating function of the single-bit error correction scheme 
for eight data bits discussed in this chapter. Use equations 9.9 
through 9.12 to generate the parity bits. You may use the C 
prototype shown below as a starting point where the integer data 
represents the 8 data bits and the returned value will contain the 
four parity bits in the least significant four positions in the order P0, 
P1, P2, and P3. 
 
int generateParityBits (int data) 
 

16. Using the programming language of your choice, implement the 
parity checking function of the single-bit error correction scheme 
for eight data bits discussed in this chapter. Use equations 9.5 
through 9.8 to verify the data read from memory. You may use the 
C prototype shown below as a starting point where the integer data 
represents the 8 data bits and the integer parity represents the four 
parity bits in the least significant four positions in the order P0, P1, 
P2, and P3. The returned value is the data, unmodified if no error 
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was detected or corrected if a single-bit error was detected. 
 
int generateCorrectedData (int data, parity); 
 

17. Determine the set of parity check 
equations for eight data bits and four 
parity bits if we use the table to the right in 
place of the memberships defined by 
Table 9-10. 

 
 
 
 
 
 
 
 
18. Identify the error in the parity check equations below. Note that the 

expressions are supposed to represent a different grouping than 
those in equations 9.2, 9.3, and 9.4. There is still an error though 
with these new groupings. 

Parity check for group A = P0 ⊕ D0 ⊕ D2 ⊕ D3 
Parity check for group B = P1 ⊕ D0 ⊕ D1 
Parity check for group C = P2 ⊕ D1 ⊕ D2 

Parity check group
 A B C D 

P0 ×    
P1  ×   
P2   ×  
P3    × 
D0 × ×   
D1  × ×  
D2 ×  ×  
D3 ×   × 
D4  ×  × 
D5 × ×  × 
D6   × × 
D7 ×  × × 


